New Mexico 911 NextGen 911 GIS

February 2022

New Mexico 911

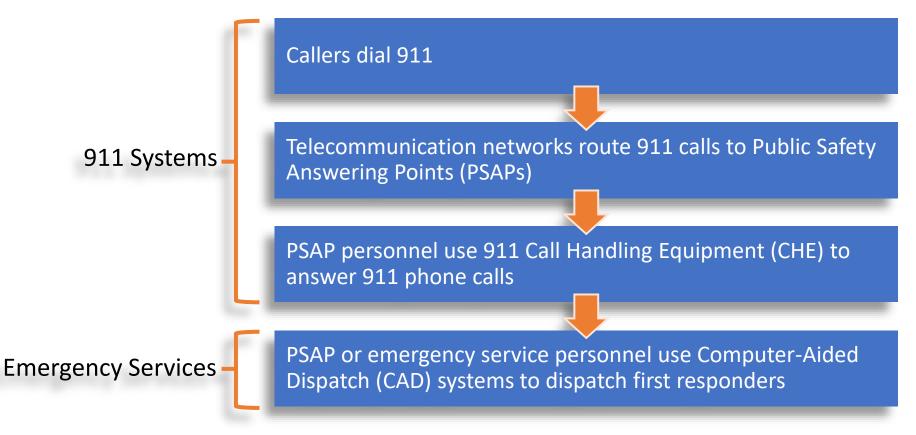
- The New Mexico 911 Program (NM911) is managed by the New Mexico Department of Finance and Administration (DFA)
- NM911 was created by the Enhanced 911 Act to ensure Enhanced 911 (E-911) systems were used statewide
- NM911 is now working to transition from E-911 to NextGen 911 (NG911) systems

New Mexico Department of Finance & Administration

E-911 Bureau

Bureau Chief GIS Coordinator Program Manager Program Manager Financial Coordinator

Stephen Weinkauf Tyler Fossett John Myrick Nicholas Losito Sonya Bachicha


NM911 Program

The vision of New Mexico 911 is to provide a best-in-class 911 system, utilizing emerging technology to facilitate efficient reliable public safety response to best serve the communities of New Mexico.

- Manage Inbound 911 Voice and Data Network
- NG 911 Planning and Implementation
- Maintain Capital Equipment Replacement Cycle
- Manage 911 Equipment Maintenance Agreements
- State GIS Data Aggregation and Map Support
- Procurement for 911 Related Statewide Price Agreements
- Contract and Vendor Management
- 911 Telecommunicator and GIS Training Support

Emergency Response

911 systems are used in conjunction with emergency services to deliver emergency response

Types of 911 Systems

- Most states use a modified version of their original landline-based 911 system called an Enhanced 911 (E-911) system
- E-911 systems are becoming increasingly unfavorable due to their inability to integrate new technology
- Many states are currently replacing E-911 systems with NextGen 911 (NG911) systems

E-911	NG911
Originally built to handle landlines and later modified to handle cell phones	Designed to handle cell phones, media, and other anticipated technologies
Uses tabular databases, called ALI-MSAGs, to route phone calls	Uses GIS to route phone calls
Uses copper telecommunication networks to transmit information	Uses internet networks to transmit information

NextGen 911 Benefits

Improves location and call routing accuracy

- Locates callers with geodata from mobile devices rather than cell tower pings
- Reduces call transfers by using GIS-based call routing

Accommodates modern forms of communication

- Cell phones
- Text messages
- Multi-media data
- Language translation
- Medical devices
- Car computers
- Building alarms

Improves PSAP personnel and first responder awareness

- Enables information exchange between PSAPs or between PSAPs and first responders
- Transmits data prior to arrival (e.g., crash impact speed, airbag deployment, etc.)
- Allows for access to building video feeds and sensors

NG911 Components

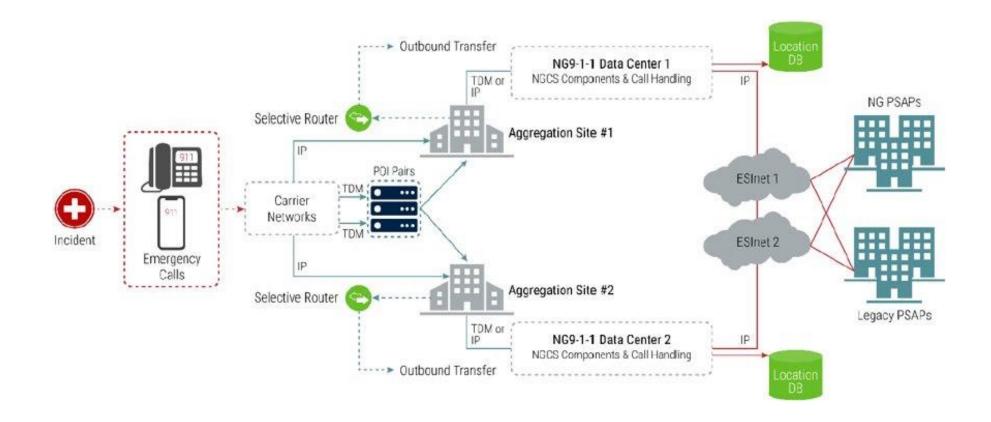
Call handling equipment

NextGen call systems interface with internet services and support voice, video, text, and other media **ESInet & NGCS**

Emergency Service IP Networks (ESInets)

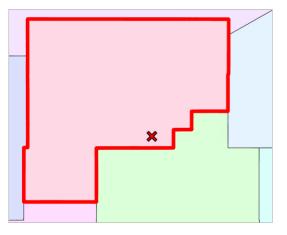
Statewide internet networks transfer large volumes of information to and from callers, PSAPs, and first responders

NextGen Core Services (NGCS)


A series of software elements provide call, media, location, and network-related services on the ESInet

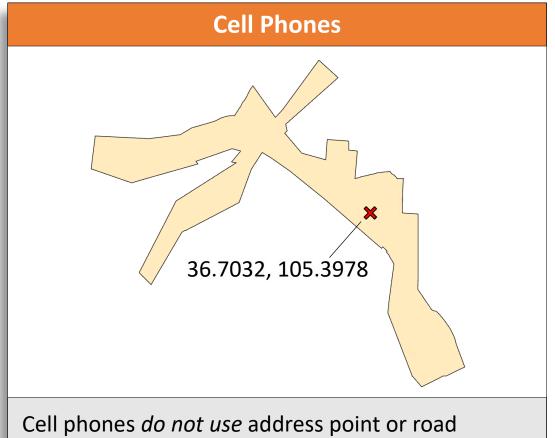
GIS

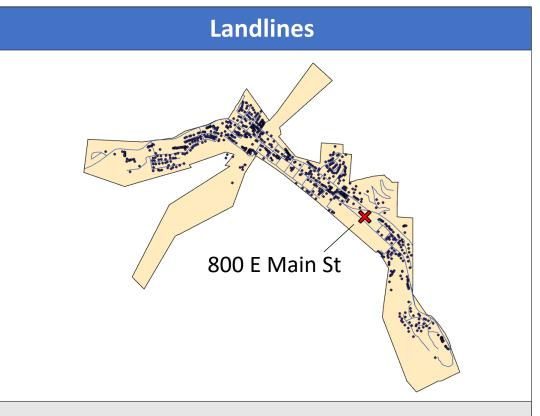
Geospatial data is used to route 911 phone calls and dispatch emergency services


i3 Standard – Defines the protocols and components required to deploy NG911 systems

NG911 System Diagram

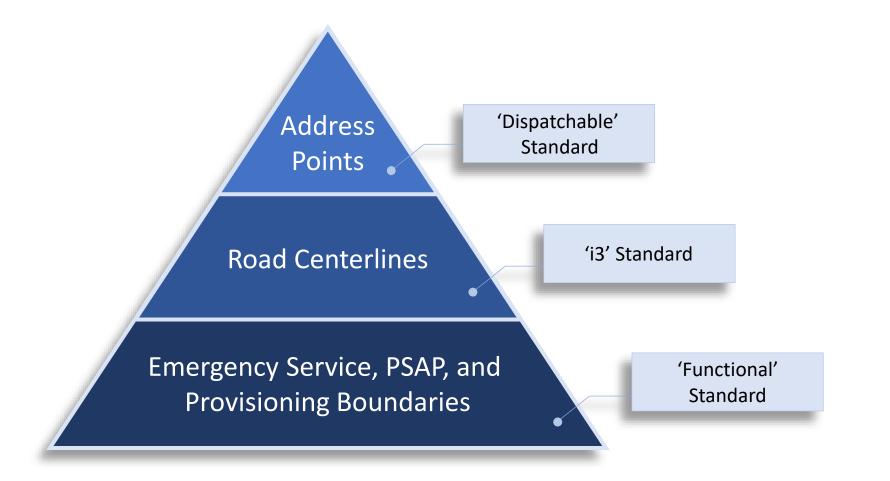
GIS-based Call Routing


NextGen systems use a point-inpolygon approach to routing phone calls, meaning they route 911 phone calls to the only PSAP whose boundary polygon intersects with a caller's location Telephone #CustomerHouse #DirStreetCommunityStateESN555-555-5555John Smith800 EMAIN STRED RIVERNM114E-911 systems use ESNs associated with PSAPs to route phone calls


NG911 systems use a point-in-polygon GIS approach to route phone calls

NG911 Location Data

Call locations are plotted in GIS using latitude and longitude coordinates transmitted with phone calls


Cell phones *do not use* address point or road centerline data to transmit lat long coordinates

Landlines *must use* address point or road centerline data to transmit lat long coordinates

Geospatial Routing Hierarchy

NextGen systems attempt to match telecom addresses to the most precise GIS data layer first, then use progressively less precise data layers to find a match if that fails

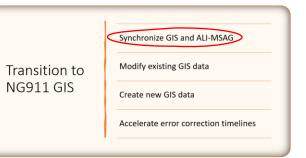
Call Handling & Dispatch Systems

- Most public safety operations use two different systems to deliver emergency response:
 - Call Handling Equipment (CHE) PSAPs use call handling equipment to answer 911 phone calls and locate callers
 - Computer-Aided Dispatch (CAD) PSAPs or emergency service providers use CAD systems to dispatch first responders
- CAD and CHE systems both use GIS but have traditionally used different datasets due to different operational needs or schema rules

NM911 Program: CAD Support

The NM911 program will begin providing CADrelated GIS support for the following reasons:

- The NextGen 911 GIS schema calls for data commonly used in CAD systems
- NextGen core service providers are required to ensure the NG911 GIS dataset is available to both the CHE and CAD systems through the ESInet
- PSAPs may need a statewide CAD GIS dataset to carry out certain dispatch practices NextGen systems require to function as intended
- Vendors are beginning to offer systems that combine both CHE and CAD

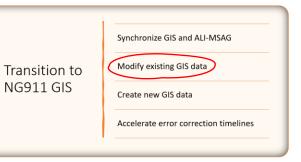

Transition to NG911 GIS

Synchronize GIS and ALI-MSAG

Modify existing GIS data

Create new GIS data

Accelerate error correction timelines



Synchronize GIS & ALI-MSAG

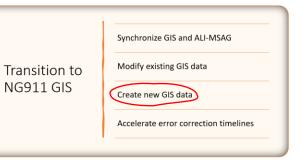
GIS will replace ALI-MSAG in NextGen environments, but a 98% match rate must be achieved before this transition can occur

ALI-MSAG*	GIS
Used in E-911 systems to route calls	Used in NG911 systems to route calls
Contains road and address information	Contains road, address, emergency service, and other information
Omits addresses that do not have landlines	Includes all roads and addresses, as well as more granular address information
Lacks a spatial component	Includes a spatial component

*Automatic Location Information (ALI) and Master Street Address Guide (MSAG)

Modify Existing GIS Data

Adopt NextGen 911 GIS schema


- Convert road centerline and address point data to CLDXF format
- Use a domain system and data type designation to ensure agency and feature IDs are globally unique

Consider neighboring datasets

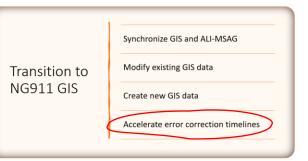
- Resolve topology and duplicate-related errors with neighbors
- Clarify data authority boundaries and aggregate data if needed
- Utilize alias road names to avoid data loss

Consider CAD needs

• Modify existing CAD-related data to fit NG911 schema

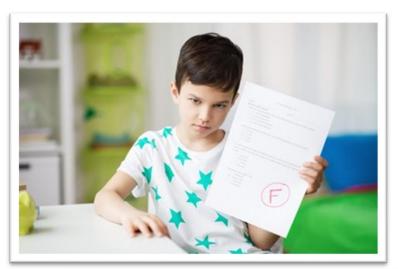
Create New GIS Data

Adopt NextGen 911 GIS schema

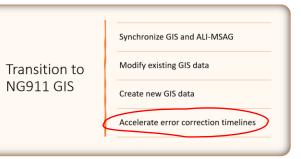

- Create new road centerline and address point attributes
- Create new PSAP, emergency service, and provisioning boundary layers
- Create optional layers and attributes as needed

Consider neighboring datasets

• Create statewide data authority boundaries


Consider CAD needs

- CAD systems may require more granular emergency service boundaries
- Populate road centerline and address point attributes that are otherwise optional
- Develop a routable network for dispatching needs if requested by local 911 authority



Accelerate Error Correction Timelines

- Most error identification and reporting occurs in near real time
- Manual error identification and reporting should occur within 1 business day
- Discrepancy reports are automatically sent to geodata providers for quick resolution
- QA/QC should be performed prior to provisioning data to the ESInet to minimize error reporting and resolution timelines

Accelerate Error Correction

Error Type	Error Detail	ID Method	Report Timeline	Responsible Party	Resolution Timeline
Call Routing	Call not routing	NGCS	Real Time	911 Authority	Real Time
Call Routing	Routing policy issue	NGCS	Real Time	911 Authority	1 day
Call Transfer	Failed call transfer	NGCS	Real Time	911 Authority	1 day
Call Routing	Misrouted call	Manual	1 day	GIS or 911	1 day
GIS Data	Invalid geometry	NGCS	Real Time	GIS Provider	3 days
GIS Data	Gap or overlap	NGCS	Real Time	GIS Provider	3 days
GIS Data	Duplicate	NGCS	Real Time	GIS Provider	3 days
GIS Data	Missing field	NGCS	Real Time	GIS Provider	3 days
GIS Data	Address range issue	NGCS	Real Time	GIS Provider	3 days
GIS Data	Map display error	Manual	1 day	GIS Provider	As needed

Existing NM911 GIS Schema

Road Centerlines

Address Points

	NextGen 911 GIS Schema		
	Required	Strongly Recommended	Recommended
	Road Centerlines	Street Name Aliases	Railroad Centerlines
	Address Points	Landmark Name Parts	Hydrology
	PSAP Boundaries	Complete Landmark Name Aliases	Cell Site Locations
	Emergency Service Boundaries	State Boundary	Mile Marker Locations
	Provisioning Boundaries	County Boundaries	
		Incorporated Municipality Boundaries	
NG911 GIS Data Model		Unincorporated Municipality Boundaries	
		Neighborhood Community Boundaries	
		Other Emergency Service Boundaries	

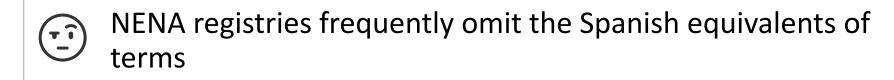
Potential Changes

- Proposed changes to the NG911 GIS Data Model are currently being reviewed and may be adopted in 2022
- Most changes would impact the data structure and format but not the data itself
- The changes that *would* impact data would mostly introduce new optional attributes, rather than modify existing data

Road Centerlines & Address Points

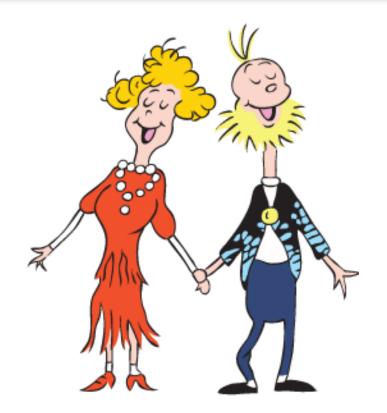
- Road and address data must be converted from the US Postal Standard used in E-911 systems to the CLDXF format used in NG911 systems
- The CLDXF addressing format was developed to interface with the PIDF-LO data structure
- Many fields in the NG911 schema require values from registries maintained by NENA
- The NG911 schema utilizes street alias and landmark name tables to accommodate multiple aliases and names per feature

	Required	Strongly Recommended	Recommended
<	Road Centerlines	Street Name Aliases	Railroad Centerlines
ζ	Address Points	Landmark Name Parts	Hydrology
	PSAP Boundaries	Complete Landmark Name Aliases	Cell Site Locations
	Emergency Service Boundaries	State Boundary	Mile Marker Locations
	Provisioning Boundaries	County Boundaries	
		Incorporated Municipality Boundaries	
		Unincorporated Municipality Boundaries	
		Neighborhood Community Boundaries	
		Other Emergency Service Boundaries	


Road Centerlines & Address Points

Many required changes may be achieved with scripts

Various attributes may be generated by developing other recommended layers

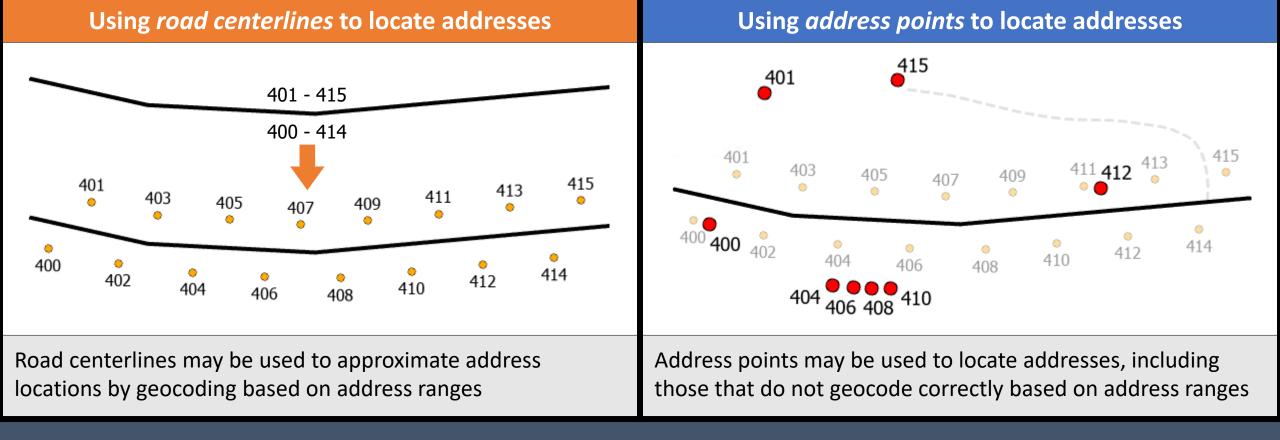


It may be difficult to parse street names into the CLDXF format using scripts because local knowledge is often required

Road & Address Data Stakeholders

- 911 authorities rely on GIS and addressing personnel who may not otherwise be affiliated with 911 to develop road and address data
- GIS providers and addressing authorities must work together
- GIS staff possess the skills to create GIS data but may lack the authority or knowledge to change an address or name a road

Road Centerline & Address Point Notes


Locating addresses...

- Both address point and road centerline datasets can be used to locate addresses, but address point datasets are preferred because they are more precise
- Using road centerlines to locate addresses becomes less feasible in rural and poorly addressed areas because conditions make geocoding based on address ranges less reliable

Requirements...

- *NextGen standards *do not* require address point datasets to be complete due to the time and resources they require to develop
- Recently passed legislation named the RAY BAUM's Act will require more granular address data for buildings with Multi-Line Telephone Systems (MLTS)

*This is the only required layer in the NextGen GIS data model that is not required to be complete

Address locations may...

- 400 Align with geocoded addresses
- 401 Sit farther away from roads and out of view
- 404-410 Lie closer to each other and vary in density along roads
 - 412 Possess address numbers with incorrect parities
 - 415 Contain structures and access points at different points along roads

Road & Address Data

Existing NM911 GIS Schema		
Field	Example	
Data Source	RAESP	
Segment ID	123	
Date Updated	1/1/2022	
Low Address Left	2	
High Address Left	10	
Street Direction	Ν	
Street Name	Main	
Street Suffix	St	
Post Directional	SW	
ESN	789	
MSAG Community	Albuquerque	
County	Bernalillo	

How to transitio	n:
Remake	\rightarrow
Modify	\rightarrow
Modify	\rightarrow
\checkmark	\rightarrow
\checkmark	\rightarrow
\checkmark	
\checkmark	
\checkmark	
\checkmark	
\checkmark	\rightarrow
\checkmark	
✓	\rightarrow

NextGen 911 GIS Schema		
Field	Example	
Discrepancy Agency ID	ci.espanola.nm.us	
Globally Unique ID	RCL123@ci.espanola.nm.us	
Date Updated	1/1/2022, 12:00:00 AM	
Left From Address	2	
Left To Address	10	
*Legacy Pre-Directional	Ν	
*Legacy Street Name	Main	
*Legacy Street Type	St	
*Legacy Post-Directional	SW	
*ESN	789	
*MSAG Community	Albuquerque	
County D	Bernalillo	

D = Values limited to a fixed domain
 *Not used in fully implemented NG911 systems

Road & Address Data

Existing NM911 GIS Schema		
Field Example		
Zip Code	87101	
Postal Community Bernalillo County		

Road Class	A11
One Way	Y
Speed	35

How to transition:
\checkmark
\longrightarrow
Create
——Modify——>
\checkmark

NextGen 911 GIS Schema		
Field	Example	
Zip Code	87101	
Postal Community	Bernalillo County	
Parity Left D	E (Even)	
Parity Right D	B (Both)	
Country	US	
State D	NM	
Incorp. Municipality	Albuquerque	
Unincorp. Municipality	South Valley	
Neighborhood Comm.	Downtown	
Road Class D	Primary	
One Way D	FT (From-To)	
Speed Limit	35	
(B) Maluss limited to a fixed demain		

D = Values limited to a fixed domain Blue text = optional fields

Address Data

Existing NM911 GIS SchemaFieldExample

How to transition:

Create Create

NextGen 911 GIS Schema					
Field	Example				
Building	Building A				
Floor	3 rd Floor				
Unit	Apartment C1				
Room	Room 201				
Seat	Cubicle 5				
Additional Info	Pediatric Wing				
Landmark Name	ABQ Botanic Garden				
Mile Post	Milepost 13				
Place Type (R)	Bank				
Placement Method (R)	Site				
Longitude	106.6504				
Latitude	35.0844				
Elevation	5000				

R = Values limited to a modifiable NENA registry domain

CLDXF Format

Existing NM91	.1 GIS Schema		NextGen 911 GIS Schema		
Field	Example		Field	Example	
Address Number		How to transition:	<u>Address Number</u>		
		Create	Address Number Prefix	10-	
Address Number	100	\longrightarrow	Address Number	100	
Address Suffix	А	\longrightarrow	Address Number Suffix	A	
<u>Street</u>	<u>Name</u>		<u>Street Name</u>		
		Create	Pre Modifier	Old	
Street Direction	Ν	——Modify——>	Pre Directional	North	
Street Pre Type	Ave	——Modify——>	Pre Type	Avenue	
		Create	Pre Type Separator	of the	
Street Name	Main	\checkmark	Street Name	Main	
Street Suffix	St	——Modify——>	Post Type	Street	
Post Direction	SW	——Modify——>	Post Directional	Southwest	
		Create	Post Modifier	Extended	

"La Vereda del Sol"

Existing NM91	1 GIS Schema		NextGen 911 GIS Schema		
			Field		Example
<u>Street Name</u>		How to transition:	<u>Street Name</u>		
		Create	Pre Modifier		La
Street Direction			Pre Directional	D	
Street Pre Type		Modify>	Pre Type	R	Vereda
		Create	Pre Type Separator	R	del
Street Name	La Vereda del Sol	Modify>	Street Name		Sol
Street Suffix			Post Type	R	
Post Direction			Post Directional	D	
			Post Modifier		

CLDXF Format – Examples

		"El Paso Dr"			
Existing NM9	11 GIS Schema		Next Field	Gen 9	11 GIS Schema Example
Stree	t Name	How to transition:			
			Pre Modifier	<u>otre</u>	
Street Direction			Pre Directional	D	
Street Pre Type			Pre Type	R	
			Pre Type Separator	R	
Street Name	El Paso	\longrightarrow	Street Name		El Paso
Street Suffix	Dr	——Modify——>	Post Type	R	Drive
Post Direction			Post Directional	D	
			Post Modifier		

CLDXF Format – Examples

"North Shore Dr"

Existing NM9	L1 GIS Schema		Next Field	Gen 9	11 GIS Schema <i>Example</i>
<u>Street Name</u>		How to transition:	<u>Street Name</u>		<u>et Name</u>
			Pre Modifier		
Street Direction			Pre Directional	D	
Street Pre Type			Pre Type	R	
			Pre Type Separator	R	
Street Name	North Shore	\longrightarrow	Street Name		North Shore
Street Suffix	Dr	——Modify——>	Post Type	R	Drive
Post Direction			Post Directional	D	
			Post Modifier		

PSAP Boundaries

- NextGen systems use PSAP boundaries to route 911 phone calls
- Each PSAP must define the area for which they want to receive 911 phone calls
- PSAPs must coordinate with neighboring agencies to ensure boundaries do not overlap or omit areas
- NextGen standards intend for PSAPs to provide emergency services to the areas for which they receive calls

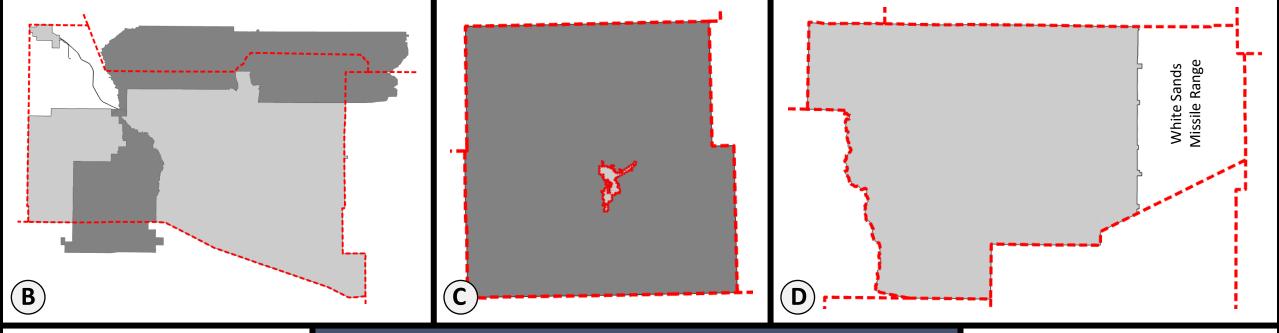
	NextGen 911 GIS Schema					
	Required	Strongly Recommended	Recommended			
	Road Centerlines	Street Name Aliases	Railroad Centerlines			
	Address Points	Landmark Name Parts	Hydrology			
<	PSAP Boundaries	Complete Landmark Name Aliases	Cell Site Locations			
	Emergency Service Boundaries	State Boundary	Mile Marker Locations			
	Provisioning Boundaries	County Boundaries				
		Incorporated Municipality Boundaries				
		Unincorporated Municipality Boundaries				
		Neighborhood Community Boundaries				
		Other Emergency Service Boundaries				

PSAP Boundaries

PSAP boundaries may be approximated by using existing E-911 data, CAD data, and civic boundaries

PSAP boundaries will be defined by developing other required emergency service boundary layers

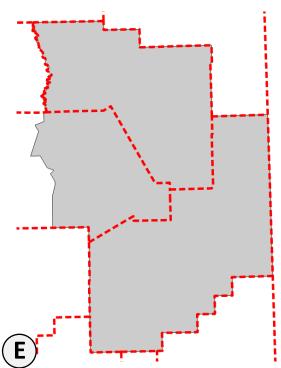
GIS providers and 911 stakeholders must collaborate



It may be difficult to create PSAP boundaries that function as intended with existing PSAP practices

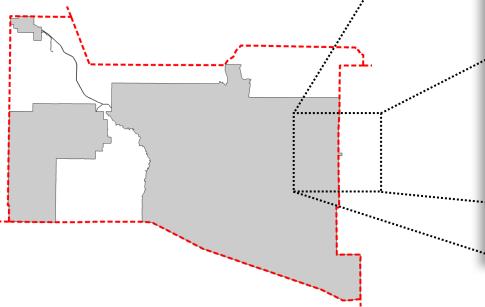
PSAP Boundary Stakeholders

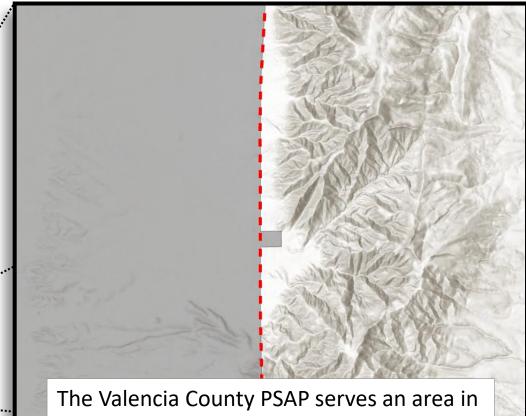
- 911 authorities rely on GIS personnel who may not otherwise be affiliated with 911 to develop PSAP boundaries
- Not all GIS providers play a role in areas with multiple GIS providers
- GIS personnel must collaborate with 911 stakeholders
- CAD administrators should participate if PSAPs already use boundary data in CAD or intend to use NG911 boundary data in CAD



PSAP boundaries may...

- A Align with county, municipal, or tribal boundaries
- **B** Intertwine with neighboring PSAP boundaries
- C Encompass other PSAP boundaries
- **D** Omit areas covered by other agencies
- **E** Span multiple counties


PSAP Boundary


County or Municipality

PSAP vs Civic Boundaries

PSAP boundaries are based on emergency response times, so they do not always align with civic boundaries. PSAPs may serve areas beyond their own communities if neighboring PSAPs are limited by distance, road access, topography, available resources, or other factors.

Torrance County due to topography

The McKinley County PSAP serves areas in Cibola County due to road access

ound

000

Emergency Service Boundaries

- PSAPs use emergency service boundaries (ESBs) to identify appropriate responders, selectively transfer calls, and transmit incident data
- Each PSAP must define separate boundaries for fire, law, and medical services
- PSAPs must coordinate with neighboring agencies to ensure boundaries do not overlap or omit areas
- NextGen standards intend for PSAPs to provide emergency services to the areas for which they receive calls

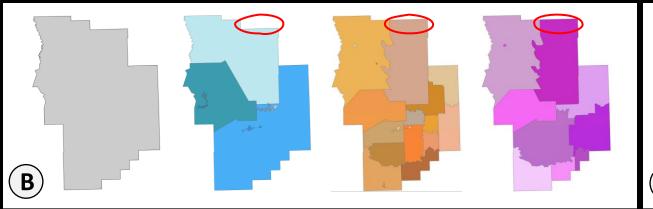
NextGen 911 GIS Schema			
Required	Strongly Recommended	Recommended	
Road Centerlines	Street Name Aliases	Railroad Centerlines	
Address Points	Landmark Name Parts	Hydrology	
PSAP Boundaries	Complete Landmark Name Aliases	Cell Site Locations	
Emergency Service Boundaries	State Boundary	Mile Marker Locations	
Provisioning Boundaries	County Boundaries		
	Incorporated Municipality Boundaries		
	Unincorporated Municipality Boundaries		
	Neighborhood Community Boundaries		
	Other Emergency Service Boundaries		

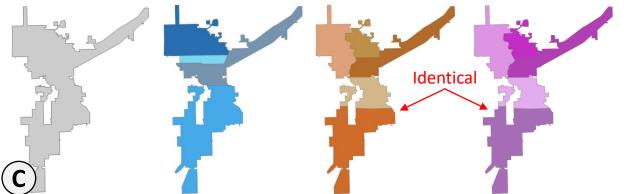
Emergency Service Boundaries

Many PSAPs already maintain emergency service boundaries for use in their CAD system

Developing emergency service boundaries will define the PSAP boundary as well

GIS providers and 911 stakeholders must collaborate and potentially adjust existing emergency service boundaries




It may be difficult to create emergency service boundaries that function as intended while using existing PSAP practices

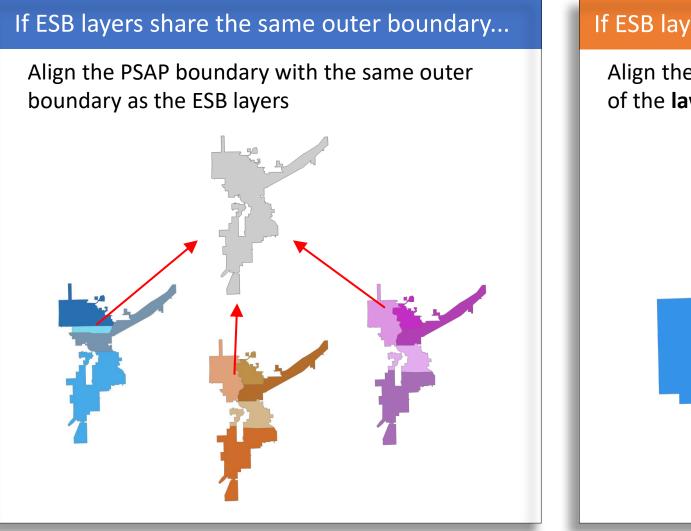
ESB Stakeholders

- 911 authorities rely on GIS personnel who may not otherwise be affiliated with 911 to develop emergency service boundaries (ESBs)
- Not all GIS providers play a role in areas with multiple GIS providers
- GIS personnel must collaborate with 911 stakeholders
- CAD administrators should participate if PSAPs already use boundary data in CAD or intend to use NG911 boundary data in CAD

Emergency service boundaries (ESBs) may...

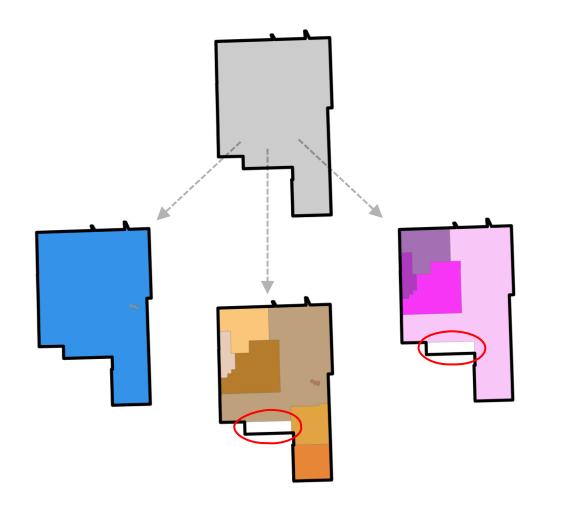
- A Share an outer boundary
- **B** Form different outer boundaries
- C Use identical polygons for multiple service types
- **D** Contain layers with only one polygon


Law

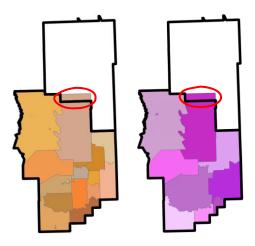


ESBs and PSAP Boundaries

Emergency service boundaries should be used to establish PSAP boundaries



If ESB layers form different outer boundaries...


Align the PSAP boundary with the outer boundary of the **law** ESB layer

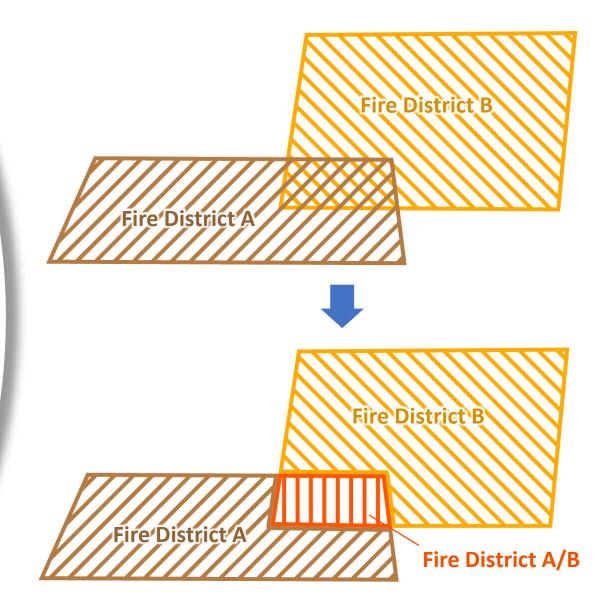
Outer Boundaries

If ESBs form different outer boundaries, PSAPs may receive calls for areas they do not serve

- NextGen guidelines do not intend for PSAPs to receive calls for areas they do not serve
- PSAP and emergency service boundaries do not necessarily have to align to ensure PSAPs can serve the areas for which they receive calls
- PSAPs in many states dispatch neighboring emergency services, rather than transferring calls
- New Mexico PSAPs may need a statewide CAD GIS dataset (and potentially other changes) to dispatch neighboring services

Call Transfers

Call transfers...


- Delay emergency response and should generally be avoided
- Occur when PSAPs are unable to provide emergency services to 911 callers and consequently transfer them to other PSAPs
- Typically result from misrouted calls

NextGen systems...

- Reduce call transfers because they route calls more accurately, thus reducing misrouted calls and subsequent call transfers
- Do not intend for call transfers to occur intentionally, so the NG911 GIS schema is not well-suited for capturing such situations

Mutual Aid

- New Mexico contains many mutual aid agreements, or situations in which multiple emergency responders serve the same area
- New polygons must be created to replace overlapping boundaries in areas with mutual aid
- NextGen guidelines discourage mutual aid, so the NG911 GIS schema is not well-suited for capturing such agreements



CAD Boundaries

- Emergency service boundaries (ESBs) used in CAD systems may be more granular than those required by the NG911 GIS data model
- GIS and 911 authorities may benefit from using the CADbased ESBs for both systems, rather than maintaining multiple ESB datasets

CAD Emergency Service Boundaries

Basic Emergency Service Boundaries

Provisioning Boundaries

- NextGen systems use provisioning boundaries to ensure only one geodata provider uploads data for a given area
- Designated data provisioners upload GIS data to the ESInet through a Spatial Interface (SI)
- Data provisioners are responsible for uploading all GIS layers
- A NextGen core service called an ECRF uses provisioning boundaries to exclude any features that lie beyond an associated data provisioner's boundary

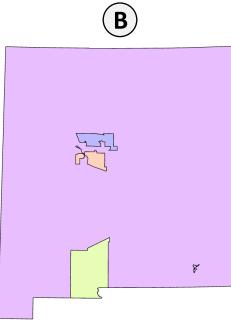
	NextGen 911 GIS Schema			
	Required	Strongly Recommended	Recommended	
	Road Centerlines	Street Name Aliases	Railroad Centerlines	
	Address Points	Landmark Name Parts	Hydrology	
	PSAP Boundaries	Complete Landmark Name Aliases	Cell Site Locations	
	Emergency Service Boundaries	State Boundary	Mile Marker Locations	
<	Provisioning Boundaries	County Boundaries		
		Incorporated Municipality Boundaries		
		Unincorporated Municipality Boundaries		
		Neighborhood Community Boundaries		
		Other Emergency Service Boundaries		

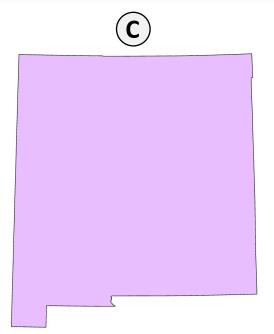
Provisioning Boundaries

The State of New Mexico will provision GIS data for most (if not all) PSAPs and geodata providers

Qualified GIS providers may be able to provision their own data if needed

An additional layer will be needed to identify data authorities




It may be difficult to coordinate between many geodata providers in areas that do not aggregate data

Provisioning vs Data Authority Boundaries

Data Authority Boundaries	Provisioning Boundaries
Indicate who maintains GIS data	Indicate who uploads GIS data to the SI
Not used in NextGen systems	Required for NextGen systems to function
Not included in the NG911 GIS data model	Required in the NG911 GIS data model
May be used for manual error notification	Used to auto-send NextGen error reports
Must be A (below)	May be A, B, or C (below)

Image: A intervention of the second se

Do we need two separate datasets?

The NG911 GIS schema does not include a separate layer for data authority boundaries because provisioning boundaries serve that purpose when PSAPs aggregate and upload data.

If PSAPs do not aggregate and upload data, and each data authority is still designated a data provisioner, polygons that would otherwise end at PSAP boundaries (such as PSAP boundaries) would need to be arbitrarily split and uploaded separately if they spanned multiple data authorities.

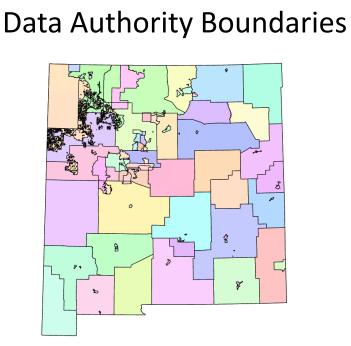
Most areas in New Mexico do not aggregate data at the PSAP level, so New Mexico 911 GIS data should therefore be aggregated and provisioned at the state level to avoid the issue described above.

However, provisioning data at the state level results in a boundary dataset that does not indicate who maintains the data, so a separate dataset should also be maintained to identify data authority boundaries.

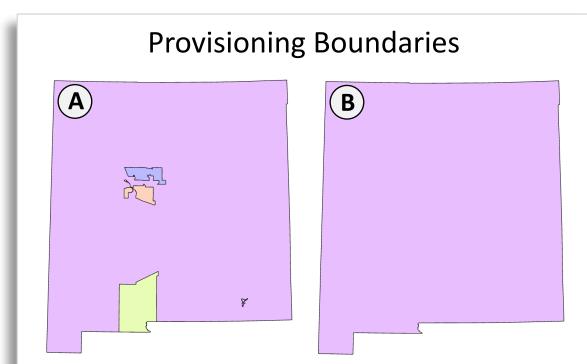
Data Authority Boundaries

- Help ensure geodata providers do not maintain or submit GIS data that overlaps or conflicts with neighboring data
- Beneficial at the state level for collecting data, performing QA/QC, providing technical support, and facilitating collaboration
- Needed by the data provisioner to relay auto-generated NextGen error reports to GIS providers for error resolution

NextGen 911 GIS Schema		
Strongly Recommended	Recommended	
Street Name Aliases	Railroad Centerlines	
Landmark Name Parts	Hydrology	
Complete Landmark Name Aliases	Cell Site Locations	
State Boundary	Mile Marker Locations	
County Boundaries		
Incorporated Municipality Boundaries		
Unincorporated Municipality Boundaries		
Neighborhood Community Boundaries		
Other Emergency Service Boundaries		
	Strongly RecommendedStreet Name AliasesLandmark Name PartsComplete Landmark Name AliasesState BoundaryCounty BoundariesDecorporated Municipality BoundariesUnincorporated Municipality BoundariesNeighborhood Community Boundaries	


Provisioning & Data Authority Boundary Stakeholders

- 911 authorities, GIS providers, addressors, and the NM911 team will all play a role in developing provisioning and data authority boundaries
- The areas for which 911 stakeholders may want to oversee data will not always align with civic boundaries
- The NM911 program will establish most (if not all) provisioning boundaries and help others develop data authority boundaries



Provisioning & Data Authority Boundaries

The NM911 GIS schema will contain separate layers for data authority and provisioning boundaries

The data authority boundaries displayed above were approximated based on previous E-911 GIS data and will likely change

Option 'A' may be viable if some PSAPs are capable of aggregating and provisioning data (and it is compatible with service providers). Otherwise, all data should be aggregated and provisioned at the state level (see 'B').

Recommended Layers

- All optional layers listed in the NG911 data model will be included in the new NM911 GIS schema, though they will not be required at the local level
- The new NM911 GIS schema may include optional layers specific to New Mexico 911 needs that are not listed in the NG911 data model
- Portions of the existing NM911 GIS schema must migrate from address point and road centerline datasets to optional tables (e.g., aliases)

NextGen 911 GIS Schema			
Required	Strongly Recommended	Recommended	
Road Centerlines	Street Name Aliases	Railroad Centerlines	
Address Points	Landmark Name Parts	Hydrology	
PSAP Boundaries	Complete Landmark Name Aliases	Cell Site Locations	
Emergency Service Boundaries	State Boundary	Mile Marker Locations	
Provisioning Boundaries	County Boundaries		
	Incorporated Municipality Boundaries		
	Unincorporated Municipality Boundaries		
	Neighborhood Community Boundaries		
	Other Emergency Service Boundaries		

Recommended Layers

The State of New Mexico will maintain data for many recommended layers

Recommended layers may be used to populate required values in other layers

Geodata providers may need to migrate existing data to different data structure types

Tables will introduce more complexity, and they will not function properly until unique IDs are created in other layers

Key Takeaways

Initial efforts should go towards developing PSAP and Emergency Service Boundaries, because all geospatial call routing requires PSAP boundaries GIS providers must maintain data that fits into the new NM911 GIS schema, but they do not need to adopt the schema locally

))).

The NM911 program will provide various resources and may convert and create certain data for local GIS providers

The NM911 program must finalize the new NM911 GIS schema and guidance documents before initiating this effort

Collaboration

The NM911 program will help facilitate collaboration between stakeholders, connect neighboring communities, and host meetings and work groups

Resources

Guidance Documents

- NM911 GIS standards
- Addressing standards
- Instruction guides
- 1-pagers
- Templates

Hands-on Support

- Guidance and counsel
- Technical support
- Financial support

Potential Tools

- Workshops
- GIS tools
- GIS alternatives
- MSAG tools

Questions?

Staff	Job Title	Phone No.	Email
Stephen Weinkauf	E-911 Bureau Chief	505-660-3637	Stephen.Weinkauf@state.nm.us
Tyler Fossett	E-911 GIS Coordinator	505-500-5587	Tyler.Fossett@state.nm.us
John Myrick	E-911 Program Manager	505-231-3052	John.Myrick@state.nm.us
Nicholas Losito	E-911 Program Manager	505-396-0082	Nicholas.Losito@state.nm.us
Sonya Bachicha	E-911 Financial Coordinator	505-827-8064	Sonya.Bachicha2@state.nm.us

NMDFA E-911 Bureau Website:nmdfa.state.nm.us/local-government/enhanced-911-program/NM911 GIS Website:nm911.org